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Abstract. The dimer problem is solved exactly for a hexagonal lattice with general boundary 
using a known generating function from the theory of partitions. It is shown that the 
leading term in the entropy depends on the shape of the boundary. 

1. introduction 

Implicit in the notion of a thermodynamic limit is the idea that bulk properties are 
insensitive to the precise nature of the boundary conditions imposed. An instructive 
example is provided by the dimer problem on a square lattice. When the dimers are 
required to occupy every site of the lattice the problem can be solved exactly both for 
the case of an m X n rectangular boundary (Fisher 1961, Kasteleyn 1961) as well as 
for the m X n torus (Kasteleyn 1961). With either choice of boundary conditions one 
finds a bulk entropy per dimer: 

m, n+m. 
1 1 1 1  

In this paper it will be shown that the above statement does not hold for the dimer 
problem on the hexagonal lattice. An exact solution has been known for some time 
(Wannier 1950, Kasteleyn 1963, Wu 1968 and Nagle 1975) but only for the case of 
toroidal boundary conditions where one does obtain a bulk entropy ( N  =number of 
dimers): 

= 0.338 314. (1) 

If instead the problem is formulated in a general hexagonal region (to be described 
below) it is seen to be equivalent to the combinatorial problem of ‘plane partitions’ 
(MacMahon 1916 and Chaundy 1931). Fortunately, the generating function for plane 
partitions is known. When the result is applied to the dimer problem it will be seen 
that a bulk limit of the entropy does not exist. 
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2. Equivalence with plane partitions 

Figure 1 shows a typical dimer configuration. The dimers are placed along the edges 
of the lattice and are represented by double bonds. Since the maximum dimer density 
corresponds to each site being the endpoint of exactly one double bond, the resulting 
configurations are equivalent to the possible KekulC structures of carbon-carbon bonds 
in graphite. 

Consider now a description in terms of the dual triangular lattice. The hexagonal 
lattice sites are mapped into the centres of triangles; the double bonds now joining 
adjacent triangles in the triangular lattice. Since every triangle is joined to exactly 
one adjacent triangle, the dimer configuration is equivalent to a tiling of the triangular 
lattice with ‘triangular dominoes’, or rhombi (see figure 2 ) .  

A B 

Figure 1. Dimer representation. Figure 2. Tiling representation. 

The tiling description will now be mapped into a three-dimensional structure. The 
three orientations of rhombi can be generated by projecting faces of a cube into a 
plane perpendicular to the cube’s main diagonal. Figure 3 depicts a collection of unit 
cubes arranged in one octant of a three-dimensional coordinate system (portions of 
the planes x = 0, y = 0 and z = 0 are shown as well). By projecting only the ‘non-hidden’ 
surfaces of figure 3 into the (111) plane, we produce the tiling pattern of figure 2 .  
The arrangement of unit cubes at integer points of the coordinate system follows 
uniquely from the tiling pattern. We proceed by building up layers of cubes. The 
broken line from A to A‘ in figure 2 instructs us how to build up the layer for 0 < y < 1. 
It consists of stacks of 3, 2 and 1 cubes in the z-direction as we proceed in the positive 
x-direction. The broken line AA’ is found by connecting opposite sides of the rhombi. 
Similarly, the layer 1 < y < 2 is generated by following line BB’, etc. It is easy to see 
that the stacks of cubes always have non-increasing height as we proceed in the positive 
x-direction. If instead we had analysed the configuration in terms of layers of constant 
x (by proceeding from C to C’, etc.) we would have found that the heights of the 
stacks of cubes are also non-increasing in the positive y-direction. Figure 4 shows the 
heights of the stacks of cubes in the x-y plane. We have just shown that dimer 
configurations of the original hexagonal lattice correspond uniquely to the assignment 
of integers 0, 1, 2 or 3 to a 3 X 4 table such that both rows and columns form 
non-increasing sequences. 
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Figure 3. Three-dimensional representation. 

[mic' 
0 0 0  

A' E' 

Figure 4. Plane partition. 

3. The generating function 

The general problem described above, of counting the number of sets of k X 1 integers 
{ zij} satisfying 

0 =S zij s m zij =S Z i + l j  z,j zi,+ 1 

is the problem of plane partitions treated extensively by MacMahon (1916). From 
the three-dimensional representation of figure 3 it is clear that the counting of configur- 
ations is completely symmetric with respect to permuting k ,  1 and m. In our case, k,  
1 and m measure the sides of the hexagon shown in figure 2. Moreover, the number 
of dimers belonging to the three different orientations are simply kl, lm and mk. 
MacMahon discovered the generating function for plane partitions: 

klm 

M = O  
G k / m ( X ) =  P , d M  

- - F k + / + m ( x ) F k ( x ) F / ( x ) F m ( x )  
Fk + / ( x) F/+ m ( x ) F m  + k ( x 

Fn(x) = (1 -X)"-l(l - X 2 ) n - 2 . .  . (1 - x n - I ) .  

Here PM is the number of configurations subject to the constraint 

E z , ~  = M. 
l s i s k  
1sjs1 

For example, 

G Z z 2 ( x )  = 1 + x + 3 x 2 +  3 x 3  + 4 x 4 +  3 x 5  + 3 x 6 +  x7+ X *  

G 2 2 2 (  1) = 20. 

We will evaluate Gklm for x = 1 when k,  1 and m are all large. Setting x =e-' we 
have, 

n-1  

p = l  
log Fn = 1 ( n  - p )  log( 1 - e-PI). 
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In the limit t - 0  for n large but fixed, 

log F, - f j0"' ( n t -  U )  log(1 -e-") du - i n 2  log nt. 

Substituting into the expression for Gklm we find: 

[ x ~ l o g x + y ~ l o g y + z ~ l o g z  
1 

2(xy + yz + zx) s(x, y, 2) = 

4 1 -  x ) 2  log(1 -x)  - (  1 - y)2 log(1- y)  - (1 - z ) 2  log(1- z ) ]  

n = k + 1 + m, x = k /  n, y = I /  n, z = m/ n. 

4. Discussion 

We observe that first of all the boundary completely determines the orientational 
distribution of the dimers. Moreover, the specific entropy given by the function 
s(x, y, z )  is not a constant but clearly depends on the shape of the boundary. The 
maximum entropy per dimer is obtained when the boundary is a regular hexagon: 

~ ( f ,  f ,  f )  =$log 3 - 2  log 2=0.261 6241. ( 2 )  

Since the dimer configurations considered here are a proper subset of those counted 
in the toroidal problem, the entropy (2) could not have been greater than (1). 

_ - -  - - - i o  

- - I ,  
- - - I *  

/ / /  \ \ \ \ \  _ _  
- _ -  

Figure 5. Hexagonal lattice. Figure 6. Square lattice. 

In order to understand the difference between the square and hexagonal dimer 
problems when boundaries are present we focus on the nature of configurations near 
a single straight boundary. In figure 5, line 1, describes the boundary and has no 
dimers crossing over it. Line I ,  may be crossed by at most one dimer, line l2  by at 
most two, and so on. Now if at some distance away from the boundary, say near the 
line lk, the dimer configurations were representative of a bulk sample, then a fixed 
fraction of lk would be crossed by dimers. By the previous remark this requires that 
k be proportional to the length of the boundary. Thus the region between lo and lk 
where the dimers are not representative of bulk properties does not become negligible 
when we take the thermodynamic limit. We see in figure 6 that the square lattice has 
a very different behaviour. Already at line l I  the number of crossing dimers can be 
close to the bulk value. 
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